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The problem of homogeneous spiral motion in a conical vessel of finite 

dimensions has been studied with application to hydrocyclones [l 1. In 
the operation of the hydrocyclone a column of air forms at the axis. It 
is therefore of interest to obtain a solution of the problem outside the 
region of the air column, We consider below the problem of homogeneous 
spiral motion in a doubly-connected region between two coaxial cones. 

1. We shall assume that an ideal incompressible fluid flows between 
two coaxial cones in a uniform spiral, symmetrical about the common axis. 
Through the annular crevice around the base of the 

external cone, fluid enters the cone at the rate 
of q units per second, whilst through the common 
vertex of the cones and through the annular crevice 
encircling the axis it issues at the rates of ql 

and q2 units per second, respectively. The length 
of the generator of the cone is equal to Ro, and 
the complete angles at the vertex (Fig. 1) are 

equal to 26, and 202, respectively. 

The problem reduces to the solution of the in- 
homogeneous differential equation [ 2 1 
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in the region 0 & r < R,. 8, Q 8 < 8,. under the following boundary con- 
ditions: 
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Instead of the function $(r, 8) let us introduce a new function u(r,@ 
connected to the first by the relation 

(I.:;) 

Equation (1.1) takes the form 

For the function u(r, 8) we have the following boundary conditions: 

u (r, 01) = 0, u (P, 82) = 0, 

sin2 fj - sin’b, 

u tHO, 0) = $2 - VJ1 \ sin202 _ sin2fjl ---) (1.3) 

The function u(r. 8) will be sought in the form of a series 

u (r, 0) = Ml(r) L1 (8) + Mz(f) L2 (8) $...+- Jf,,(f) L, (0) +... 

expanded in the characteristic functions L,,(e): 

L, (8) = sin fl [Qil, (cos 01) P~n(~~s 0) -Pt, (~05 01) Q~,(co~ O)l 

(1.6) 

Here Pi (cog 8), Q,$(cos 8) are Legendre’ s associated functions. 
n 

The characteristic numbers v, are determined as the roots of the 
transcendental equation 

Q; (cos 81) P;(cos 02)-P; (cos 01) Q’, (cos 42) = 0 (I.Tj 

The function M,,(r) is determined from the differential equation [ 1 1 

Here 

The function p(8) = cosec 8 represents a weighting function. The 

(2.9) 
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function M,(r) must satisfy the following conditions: 

1) as r + 0 the function U,(r) must be finite in value; 

2) when r = ifs according to the third condition (1.5) and the de- 

finitions (1.9) 

(1.10) 

Let us introduce the dimensionless quantities p = r/R*, K = kR, and 

Y = +&JL-,* and write dawn the final. expression for the stream function 

Here ~~~~~~ (K) and s_~/~,~ (K) are Lommel functions (Pm = Vn -t l/2). 
n n 

From (1.11) we can obtain the solution for some special cases. Thus, 
y = 0 corresponds to the case where the annular crevice is absent along 
the base of the internal cone, whilst y = 1 corresponds to the case 
where the annular crevice is absent along the base of the external cone 
and the fluid enters through the annular crevice of the small cone. 

The calculation is appreciably simplified if we make use of the 
asymptotic formulas for the associated Legendre functions. derived in 

t31 

(1.12) 

which give good results even when v = 10. 

For cases of practical interest 8, = 15O - 20’ and the smallest root 
of Equation (1. ‘7) exceeds 10, so that we can use Formulas (1.12). 
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Equation (1.7) takes the form 

Jl (kx) Nl (I) - Jl (x) iv1 (kx) =:= 0 &k, (Y+$)el=~) (1.13) 

If x,, is the nth root of Equation (l-13), then the corresponding root 
of Equation (1.7) is found from the relation 

1 2, 
vn-j-y =- 

01 

Calculating L,‘, a,, b, from Formulas (1.9) and using (1.12), we can 
rewrite Formula (1.11) in the following form, which is more convenient 
for numerical computations: 

‘,1_ sin2 e 

pn (p, - 1) (t%, -t ‘h) x 

2 1 pn2 - n/4 

~{~/82sin~n,[J~(~,~1)N~((~,,-~)~~)-N~(~ne~)Jl((~L~-1) e2)1- 

_ J/Q, sin o1 [Jo (p,el) N1 ((pn -- 1) tll)--~~‘l (Yt101) Jl((pn-l) “)” 

with the help of Formula (1.14) we carried out the Commutation for 
the following data: 

o1 == 1.3”, 92 == 15”, x = 4, C/kQ,=~-15, r=--2 
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To estimate the influence of the air core we carried out similar 
calculations for the complete cone with 8, = 15’ and the same values of 
the parameters K, C/k$l,y. 

The results of the calculations show that the 
presence of the air core has a very insignificant 
effect on the distribution of the streamlines. 
Accordingly, in the determination of the flow chart 
of the fluid motion inside the hydrocgclone, the 
influence of the air core can be neglected. 

2. Now suppose that the rigid spherical surface 
is absent, whilst $g is a given function of 8. In- 
stead of the third condition (1.3) we shall have 
q&R,,. 6) = f(6). The function f(6) must be such 
that when 8 = 8, it vanishes, whilst it is equal to 
$I when 8 = 8,. 

In what follows only the quantity ~a(~~~ is 
changed: 

Fig. 2. 

Let us solve the problem in the particular case when the radial com- 
ponent of velocity is constant at r = R,. It is not difficult to show 
that in this case 

f(O) = $1 
coscjr-cos@ 

(‘OS 9% - cos f& 
(22) 

We shall write down the final expression for the stream function: 
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where a, and & are as before, and 

From Formula (2.3) we performed the calculations for 8, = 1.5”, 
8,= 15’. K= 4 and for various values of the parameter C/k+ l. The 
streamlines in the case C/k $ l = 7 are shown in Fig. 2. 

BIBLIOGRAPHY 

1. Bostandzhiian. s. A., Odnorodnoe vintovoe dvizhenie v konuse (Homo- 
geneous spiral motion in a cone). PMM Vol. 25, No. 1, 1961. 

2. Vasil’ ev, 0. F., Osnovy rekhaniki vintovykh i tsirkuliatsionnykh 

potokov (Fundamental Mechanics of Spiral and Circulatory Flows). 

Gosenergoizdat, 1956. 

3. Muradian, R. M. , Asimptoticheskie formuly dlia obobshchennykh funktsii 
Lezhandra i Gegenbauera (Asymptotic formulas for the generalized 
functions of Legendre and Gegenbauer). Dokl. Akad. Nauk SSSR 

Vol. 115, No. 5, 1957. 

Translated by A.H.A. 


